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Abstract 
This paper presents an adaptive functional-based Neuro-fuzzy-PID incremental (NFPID) 

controller structure that can be tuned either offline or online according to required controller performance. 
First, differential membership functions are used to represent the fuzzy membership functions of the input-
output space of the three term controller. Second, controller rules are generated based on the discrete 
proportional, derivative, and integral function for the fuzzy space. Finally, a fully differentiable fuzzy neural 
network is constructed to represent the developed controller for either offline or online controller parameter 
adaptation.  Two different adaptation methods are used for controller tuning, offline method based on 
controller transient performance cost function optimization using Bees Algorithm, and online method based 
on tracking error minimization using back-propagation with momentum algorithm. The proposed control 
system was tested to show the validity of the controller structure over a fixed PID controller gains to control 
SCARA type robot arm. 

  
Keywords: Optimization techniques, adaptive control, Fuzzy systems, Neuro-Fuzzy-PID PID-controllers, 
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1. Introduction 
 
1.1. Background 

Three term PID controller is one of the simplest and oldest control method utilized in 
industry due to its simple structure and implementation that achieved good performance for 
plenty of applications. Traditional PID controllers have been widely used for industrial processes 
due to their simplicity and effectiveness for systems that can be modeled by mathematical 
equations. Despite its simplicity, it is a linear controller and generally difficult to tune its 
parameters to the desired performance all times, especially with nonlinear and complex systems 
[Petrov et. al., 2002]. As a consequence of the rapid development in Fuzzy Logic Systems 
(FLS) and Neural Networks (NN) techniques in the 1980s, great progress in Fuzzy PID 
controller and fuzzy-Neural Networks (FNN) design and implementation techniques was made 
[Sheroz et. al., 2008]. Fuzzy-PID controllers provide non-linear structure that, despite more 
complex than simple linear PID controller, can achieve controller non-linearity needed to 
achieve the desired control response in complex systems [Karasakal et. al., 2005].   Fuzzy logic 
control (FLC) has found many successful industrial applications and demonstrated significant 
performance improvements, as the controller structure gives flexibility to achieve either linear or 
non-linear controller response [Baogang et al., 2001]. Most FLC can be classified into two types, 
the gain-scheduling FPID type and the direct-action FPID type. In the gain-scheduling FPID 
type, fuzzy inference is employed to compute the individual conventional PID gains [Huang and 
Yasunobo, 2000]. The majority of FPID applications belong to the direct-action FPID type where 
the direct-action FPID is placed within the feedback control loop to compute the control actions 
through fuzzy inference [Ying, 1993]. Several direct-action FPID structures were reported using 
one, two or three inputs (error, rate of change of error and integral of error) [Ying et al., 1990]. In 
all of these direct-action FPID controllers, the derivative and integral functions are performed 
quantitatively outside the FLC. They do not employ a FLS as a function approximation to 
perform a fuzzy integral or fuzzy derivative function [Mann et. al., 1999]. In these controllers, the 
FLS performs only the non-linear amplifications associated with the three PID control actions. 
Therefore these controllers are actually Input-based FPID controllers (I-FPID) rather than 
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Function-based FPID controllers (F-FPID) [Tang et. al., 2001]. In this paper, the controller 
functionally performs fuzzy derivative and fuzzy integral functions, so that no calculations are 
required outside the FLC. The proposed controller employs only two inputs (present and 
previous errors), so that the design procedure is simpler. Additionally, most fuzzy logic based 
PID controllers in literature adapt the triangular membership function shape for simplicity of 
implementation, despite it’s linear nature. In this paper, other types of membership functions, 
such as Gaussian, and sigmoid membership functions are utilized in the design of the controller 
to allow tuning for the controller membership functions as well as online adaptation of the 
controller based on the Back-propagation with momentum (BP) learning algorithm.  

Since the early 1990s, FNN have attracted a great deal of interest because such 
systems are more flexible and transparent than either NN or FLS alone. Different types of FNN 
have been presented in the literature [Shing and Jang, 1993]. For tracking control where the 
reference and dynamics is always changing, the inverse dynamic control is the best to be 
utilized, despite very difficult to be implemented mathematically. Consequently, researcher 
tends to use neural network and neuro-fuzzy systems to avoid complex mathematical 
formulation [Sinthipsomboon et. al., 2011]. In [Anh and Pham, 2010] a gain-scheduling neural 
PID controller is utilized with 2-axis robotic structure for varying the parameters of the neural 
PID controller to include information from the robot dynamics. The FNN types can be identified 
based on the structure of the FNN, the fuzzy model employed and the learning algorithm 
adopted [Ahn and Anh, 2009]. On the other hand, the most commonly used and successful 
approach is the feed-forward and recurrent structure model, while using the BP as the learning 
algorithm [Yuan et. al., 1992, Nauck and Kruse 1993]. On the other hand, according to the fuzzy 
model adopted, there are two types of fuzzy models that can be integrated with a neural 
network to form a FNN [Anh, 2010]. These two models are the TS-model [Takagi and Sugeno, 
1985] and the Mamdani-model [Lee, 1990a and 1990b]. However, Mamdani-model based FNN 
represent all linguistic fuzzy representation compared with TS-model-based FFNN. In this 
paper, Mamdani-model is utilized to construct a full-differential Neuro-Fuzzy PID controller that 
can be adapted both off-line or on-line [Shing and Jang 1993]. 
 
1.2. Problem Statement 

The best description of the problem statement of this research topic is how to construct 
a functional based PID control that is performing the proportional, differential, and integral 
operations on the fuzzy membership functions directly and affected only by the error value, 
while constructing this controller in a computational format that can be easily adapted either off-
line or online using any available adaptation algorithm [Fahmy and Abdel Ghany 2013].  

 
1.3. Objectives  

Looking into the previous problem statement, the objectives of the research can be 
summarized as: 
1.3.1. Generate new definition for fuzzy proportional, differential, and integral functions. 
1.3.2. Implement the controller calculation process into a full-differential Mamdani-model 

neural network. 
1.3.3. Define the neural network and its activation functions in a differentiable format. 
1.3.4. Demonstrate the off-line and online adaptation capabilities of the suggested PID 

controller. 
The remainder of the paper aims to show the design processed and suggested 

functions to meet the above objectives. The remainder of the paper is organized as follows. 
Section (2) outlines the differential functional-based fuzzy PID controller. Section (3) presents 
the overall structure of the proposed adaptive neuro-fuzzy PID controller. Section (4) describes 
the off-line and on-line neuro-fuzzy PID controller tuning methods. Section (5) compares the 
results of applying the proposed control system with those obtained with a conventional-PID for 
a robotic-arm joint movement control. Section (6) represents a detailed discussion of the work 
presented, while section (7) concludes the paper. 
 
 
2. Differential Functional-Based Fuzzy PID controller 

The suggested fuzzy-PID-like incremental controller employs two inputs (present and 
previous errors) that are more convenient for digital controller implementation. Each element of 
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the fuzzy-PID-like incremental controller can approximate the corresponding control function 
with separate non-linear gain using five fuzzy set partitions (NL, NS, ZE, PS, and PL) for both 
input and output universes of discourses. The input/output universe of discourse of each 
input/output variable is uniformly partitioned using fuzzy sets defined by symmetrical Gaussian, 
L-sigmoid, and R-sigmoid membership functions with 50% overlap for continuous approximation 
of input/output signals as shown in figures (1) and (2). Li represents the distance between two 
consecutive membership functions centers. 
 

 
 

Figure (1). Input membership functions of fuzzy controller 
 
 

 
 

Figure (2). Output membership functions of fuzzy controller 
 
 

The proportional, derivative and incremental part of the integral control actions of a 
fuzzy-PID-like incremental controller are mainly functions of the two present and past error 

variables,  err kt  and  err kt t , or their normalized variables to the controller scale of unity 

membership function maximum output,  e kt  and  e kt t . Consequently, 

 

           
      

PID P D

I I

kt e kt ,e kt-t e kt ,e kt-tf fU

U kt t  e kt ,e kt-tf

 

  
 (1) 

 
Where the three functions Pf , Df , and If  are the proportional, derivative and 

incremental integral functions to be implemented using the fuzzy logic controller and UI (kt-t) is 
the past output of the integral controller element.  
The three functions in Equation (1) can be approximated using three two-input Fuzzy Control 
Elements (FCEs). Consequently, the outputs of the three FCEs are summed together to form 
the proposed fuzzy-PID-like incremental controller as shown in figure (3). In the following sub-
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sections, the design process of the operation rules for the three functions in Eq. (1) in the form 
of three fuzzy control elements will be explained. 
 
 

 
 

Figure (3). Structure of the fuzzy PID feedback controller 
 
 

Each output function of the fuzzy PID-like incremental controller is of a different nature 
(proportional, derivative, or integral). Therefore the partition of the output universe of discourse 
is selected to be of the same membership function shape and degree of overlapping but with 
different scaling factors to allow for different tuning of each control element.  
 
2.1. Fuzzy Proportional Control Element 

The fuzzy rules of the operation of the FPCE according to the suggested partitions are 
generated heuristically based on the intuitive concept that the proportional control action at any 
time step is directly proportionally to an error 1e  at the same time step regardless of the value of 

the error at the previous time step 2e . Therefore if the error variable 1e  is expressed 

linguistically as zero, negative small, or negative large, the proportional control action can be 
expressed linguistically as zero, negative small, or negative large respectively, regardless of the 
linguistic value of the error variable 2e . Consequently, the Fuzzy Associative Memory (FAM) 

rules according to this concept of the FPCE can be written as shown in table (1). 
 
 

Table (1). Proportional element FAM bank 

2e
 

1e  
NL NS ZE PS PL 

NL NL NL NL NL NL 

NS NS NS NS NS NS 

ZE ZE ZE ZE ZE ZE 

PS PS PS PS PS PS 

PL PL PL PL PL PL 

 
 
where [NL, NS, ZE, PS, PL] are the term sets of the normalized input variables 1e  and 

2e  and the normalized output variable  P ktU . To infer the fuzzy output of the FPCE, 

Mamdani’s min/max method using the bounded sum triangular co-norm is employed. In [Yuan 
et al., 1992], the fmin and fmax functions were introduced to approximate the logic min and logic 
max functions analytically. These two functions were formulated as follows:  
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     2 2
,   0.5 ( ) 0.01 0.01        e1 2 e1 2 1 2e e e efmin h h h h h h  (2) 

 

     2 2
,   0.5 ( ) 0.01 0.01        

1 2 1 2 1 2p p p p p pfmax h h h h h h  (3) 

 

Where  1 2e  e  h and h  are defined as the fuzzy membership function values of the input 

error variables ( 1e  and 2e ), while  p1 p2 h and h  are defined as the fuzzy membership function 

values of the same output membership function resulting from any two different rules at any 
time step. The centre average defuzzification method (Height method) [Ying et. al., 1990; Ying, 
1993] is employed to calculate the crisp output of the FPCE. Consequently, based on the 
defined membership functions, only four rules are triggered at a time. Therefore, the inference 
system produces four non-zero fuzzy outputs for the two crisp error inputs. The fuzzy output of a 
rule (output fuzzy sets after inference) is a fuzzy set with a flat-top Gaussian shape membership 
function whose height (h) equals the membership degree produced by the min operator of Eq. 
(2). Based on the input errors condition, employed inference method, and defuzzification 
method, the output of the FPCE is calculated for any input condition using the centre average 
defuzzification method, assuming different membership output function for each rule inference, 
as follows: 

 

(4)i

i

output
1

1

  

4

Rulei=
4
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h value of the input Mf with min h    output Mf centre
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 
  
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


 

Using Eq. (2) and Eq. (3), the analytical solution of the proportional function of the 

FPCE  1 2,Pf e e  in Eq. (1) can be expressed as follows: 
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



 
where CPRi is the FPCE output membership function centre value for rule i, μRi(e1) is the 
membership degree of the present error to the rule i, and μRi(e2) is the membership degree of 
the past error to the rule i. 
 
2.2. Fuzzy Derivative Control Element 

In the case of the Fuzzy Derivative Control Element FDCE, the distance between the 
centres of any two adjacent output membership functions is now LD. The fuzzy rules for the 
operation of the FDCE according to the suggested partitions are generated heuristically as well 
based on the intuitive concept that the derivative control action at any time step is directly 
proportionally to rate of change of the error (difference between two successive time steps). For 
example, if the error variables 1e  and 2e  are both expressed linguistically as positive, the 

derivative control action can be expressed linguistically as zero. Consequently, the Fuzzy 
Associative Memory (FAM) rules according to this concept of the FDCE can be written as 
shown in table (2). Where [NL, NS, ZE, PS, PL] are the term sets of the normalized input 

variables 1e  and 2e  and the normalized output variable  D ktU . Consequently, based on the 

defined membership functions, only four rules are triggered at a time. The fuzzy output of a rule 
(output fuzzy sets after inference) is a fuzzy set with a with a flat-top Gaussian shape 
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membership function whose height (h) equals the membership degree produced by the min 
operator of Eq. (2) during the fuzzy inference. 

 
 

Table (2). Derivative element FAM bank 

2e
 

1e  
NL NS ZE PS PL 

NL ZE NS NL NL NL 

NS PS ZE NS NL NL 

ZE PL PS ZE NS NL 

PS PL PL PS ZE NS 

PL PL PL PL PS ZE 

 
 

Based on the input errors condition, employed inference method, and defuzzification 

method used in the last section, the analytical solution of the FDCE function  1 2,Df e e  in Eq. 

(1) can be written as follows: 
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Where CDRi is the FDCE output membership function centre value for rule i, μRi(e1) is the 
membership degree of the present error for the rule i, and μRi(e2) is the membership degree of 
the past error for the rule. 
 
2.3. Fuzzy Incremental Integral Control Element 

The conventional integral control action is composed of two parts. The first part is the 

integration initial condition or the controller's output history  I kt-tU  and the second part is the 

controller's incremental output  1 2I I ktf ( e ,e ) U  . Therefore, the output of the integral 

element is composed of the same two parts. To implement the Fuzzy Integral Control Element 
(FICE), the same numbers of input/output partitions as in the previous two sections are 
employed. However, in this case, the distance between the centres of any two adjacent output 
membership functions is LI. To implement the integration initial condition and the incremental 
part into one fuzzy controller element, the centres of the output universe membership functions 

are shifted after the kth time step to a distance
1

0

( ) ( )
k

I I
m

mU kt t U t




   . The incremental part 

of the integral control element is of interest now. The fuzzy rules of the operation of the 
incremental FICE are generated heuristically based on the intuitive concept that the incremental 
part of the integral control action at a time step is directly proportional to the sum of the error 
variables at two successive time steps. For example, if the error variables 1e  and 2e  are 

expressed linguistically as positive and negative, the incremental part of the integral control 
action can be expressed linguistically as zero. Consequently, the Fuzzy Associative Memory 
(FAM) rules according to this concept of the incremental FICE can be written as shown in table 
(3). Where [NL, NS, ZE, PS, PL] are the term sets of the normalized input variables 1e  and 2e  

and the normalized output variable  I KTU . 

 
 

Table (3). Integral incremental element FAM bank 
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2e
 

1e  
NL NS ZE PS PL 

NL NL NL NL NS ZE 

NS NL NL NS ZE PS 

ZE NL NS ZE PS PL 

PS NS ZE PS PL PL 

PL ZE PS PL PL PL 

 
 

To obtain the output of the incremental FICE, the same partitions, inference, and the same 
defuzzification method as in the last two sections are employed. Consequently, only four rules 
are triggered at a time. The fuzzy output of a rule (output fuzzy sets after inference) is a fuzzy 
set with a with a flat-top Gaussian shape membership function whose height (h) equals the 
membership degree produced by the min operator of Eq. (2) during the fuzzy inference. Based 
on the input errors condition, employed inference method, and defuzzification method used in 

the last two sections, the analytical solution of the incremental FICE function  1 2,If e e  in Eq. 

(1) can be written as follows: 
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

 
Where CIRi is the incremental FICE output membership function centre value for rule i, μRi(e1) is 
the membership degree of the present error for the rule i, and μRi(e2) is the membership degree 
of the past error for the rule i. 
The integral part has its past value added to the output to achieve the required integration 
action. In our functional-based fuzzy controller, this will be achieved by shifting the output 
membership functions centres of the integral element universe of discourse, so that only the 
incremental part of the integral control element is used in the controller, while the past value is 
always stored in the centre of the controller universe of discourse as shown in figure (4). 
 
 

 
 

 
Figure (4). Shifting of the universe of discourse 

 
 

This behavior resembles the integration method in a classical digital integration 
scheme. Consequently, the rule base of the three incremental FCEs (P, D and I) can be 
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combined together to form one rule base for the total functional-based fuzzy-PID controller as 
follows: 
 

     
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 
 
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Where kp, kd, and ki are the scaling factors, while ku is an overall gain for the PID controller. 
Table (4) represents the combined functional-based fuzzy-PID controller rules. 
 
 

Table (4). Functional-Based fuzzy PID controller combined FAM bank 
e1 e2 P-element D-element I-element 
NL NL NL ZE NL 
NS NL NS PS NL 
ZE NL ZE PL NL 
PS NL PS PL NS 
PL NL PL PL ZE 
NL NS NL NS NL 
NS NS NS ZE NL 
ZE NS ZE PS NS 
PS NS PS PL ZE 
PL NS PL PL PS 
NL ZE NL NL NL 
NS ZE NS NS NS 
ZE ZE ZE ZE ZE 
PS ZE PS PS PS 
PL ZE PL PL PL 
NL PS NL NL NS 
NS PS NS NL ZE 
ZE PS ZE NS PS 
PS PS PS ZE PL 
PL PS PL PS PL 
NL PL NL NL ZE 
NS PL NS NL PS 
ZE PL ZE NL PL 
PS PL PS NS PL 
PL PL PL ZE PL 

 
 
Finally, the total fuzzy-controller output can be represented in the form: 
 

  ( )1 1 2 1 2PID U P NP D ND I NI
= + - + +e e e e eU k k k k k k k    (9) 

 
Where kNP , kND , and kNI  are  the equivalent non-linear fuzzy gains.  
 
 
3. Adaptive Neuro-Fuzzy PID Controller Structure 

One of the main problems with conventional neuro-fuzzy controllers reported in 
literature is the difficulty of applying sensitivity analysis or online-tuning methods due to the no-
differential shape of the triangular membership functions as well as the logic minimum and logic 
maximum functions [Yuan et. al., 1992]. This in turn adds complexity to the speed and method 
of on-line adaptation used. In the proposed controller, membership functions are replaced by 
differentiable ones, as well as the logic minimum and logic maximum functions are replaced by 
the softmin and softmax functions. The proposed structure of the fuzzy PID controller achieves 
more flexibility for both online and offline tuning. 
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3.1. Softmin and Softmax Functions 
The proposed neuro-fuzzy network is a feed-forward connectionist representation of a 

Mamdani-model based FLS. In order to achieve a suitable trade-off between the transparencies 
of the neurofuzzy system, the ease of mathematical analysis, the network has to employ 
differentiable alternatives for the logic-min and logic-max functions to implement its decision-
making mechanism. For this purpose, a differentiable alternative of the logic-min function 
termed softmin and a differentiable alternative of the logic-max function termed softmax are 
presented [Estevez and Nakano, 1995; Shankir, 2001]. Using these two differentiable functions 
to implement the network decision-making mechanism allows a more accurate calculation of the 
partial derivatives necessary for the BP learning algorithm. In [Berenji and Khedkar, 1992] an 
analytical form of the logic min function termed softmin, is given by: 

 

  1

1

1 2










 






n

i
n

i

ii

i

i

, ,...,n

aa e
softmin ,ia

ae
 (10) 

 
where, ai is the ith argument and the parameter  controls the softness of the softmin 

function. As    , softmin function  logic min. However, for a finite , softmin becomes a 

multi-argument analytical approximation of the logic min function. [Estevez and Nakano, 1995] 
introduced the multi-argument softmax function used to approximate both the logic-max and 
logic-min function with a proper selection of parameters. Furthermore, based on De Morgan's 
law, [Pedrycz, 1993; Shankir, 2001; and Zhang et. al., 1996] presented a multi-argument 
alternative of the logic-max function termed softmax as a logic complement of the above 
mentioned sofmin function: 
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where i Ai
μa  and 1 iia a   

These two differentiable functions will be utilized as the inference mechanisms within 
the neuro-fuzzy network. 

 
3.2. Neuro-fuzzy Network Structure 

Figure (5) presents the structure of the proposed network. It consists of a six-layer feed-
forward representation of a Mamdani-model based FLS [Pham et. al., 2008. The network 
structure is similar to other Mamdani-model based FFNN in the first four layers structure as in 
Lin and Lee’s FFNN [Lin and Lee, 1991] and in Berenji and Khedkar’s FFNN [Berenji and 
Khedkar, 1992]. The difference is in the representation of the defuzzification function, which is 
represented using the last two layers (layer five and layer six) instead of one layer only. In 
general, a node in any layer of the network has some finite fan-in of connections represented by 
weight values from other nodes and fan-out of connections to other nodes. Associated with the 
fan-in of a node is an aggregation function (f ) that serves to combine information, activation, or 
evidence from other nodes. Using the same notation as in [Lin and Lee, 1991], the function 
provides the net input for such a node as follows:  
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where p is the number of fan-ins of the node, w is the link weight associated with each 
fan-in, u is an output of a node in the preceding layer associated with the fan-in and the 
superscript k indicates the layer number. A second action of each node is to output an activation 
value as a function of its net-input, 

 

 kk
i
koutput fo a   (13) 

 

where  k .a  denotes the activation function in layer k. The functions of the nodes at 

each of the six layers of the proposed network are described next. 
 

 
Figure (5). Structure of the proposed neuro-fuzzy network 
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Layer 1: Nodes at layer one are input nodes, which represent input linguistic variables. Layer 
one contains two nodes only (i=1, 2), which receive the current sample error value and stores 
internally the previous error value. The nodes in this layer simply transmit input values directly to 
the next layer. That is, 
 

1 111
ii ii i andf fu x a    (14) 

 
The link weights at layer one are fixed to unity. 
Layer 2: Nodes at layer two are input term nodes which act as membership functions to 
represent the terms of the respective error input linguistic variables. An input linguistic variable x 

in a universe of discourse U is characterized by { }A,...,A,AA(x) m
x

2
x

1
x= , where A(x) is the 

term set of x, that is the set of the generated membership functions (MSF) for each error input. 
Layer two therefore accommodates two independent term sets, where each term set 
corresponds to an error input xi and is partitioned to five (mi) terms representing input 
membership functions. The function of each node j in a term set i is to calculate the degree of 
membership of the input xi with respect to the membership function associated with the term set 

j iA ( )x  according to the specific equation of this membership function: 
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Where mij and ij are, respectively, the centre (or mean) and the width (or variance) of the 
Gaussian function and ij is the characteristic value for the sigmoidal function. Hence a link 

weight at layer two w2
ij  can be interpreted as an adjustable free parameter of the input 

membership function shape and size.  
Layer 3: The nodes at layer three are the twenty-five PID rule nodes which have been 
explained previously; where each node associates one term node from each term set to form a 
condition part of one fuzzy rule if it is part of that rule. Hence, the rule nodes should perform the 
logic min operation if the min interpretation of the sentence connective "and" between the 
antecedents of a fuzzy rule is employed. Consequently in this design, the logic-min function is 
replaced by the softmin function. Therefore the function of the rth rule node using softmin can be 
written as follows: 
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where r = 1,…,R, and R is the number of rules or rule nodes in layer three , q is the number of 
inputs for that particular rule, ui is the ith input to layer three, and  is an index representing the 
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softness of the softmin function. All link weights at this layer are fixed to unity to transmit only 
the membership degree of the linguistic input to the rule interpretation mechanism.  
Layer 4: The nodes at layer four are output term nodes which act as membership functions to 
represent the output terms of the respective l linguistic output variables (in the PID controller 
case l=3). An output linguistic variable y in a universe of discourse W is characterized by 

 1 2 5
y y yF(y) , ,...,F F F , where F(y) is the term set of output y, that is the set of the class 

membership functions for each controller output, as explained previously, representing the 
linguistic values of the controller output. Consequently layer four accommodates three 
independent term sets, where each term set corresponds to individual controller output yi and is 
partitioned to five terms representing output membership functions (MSF). The nodes in layer 
four should perform the logic-max operation to integrate the fired rules that have the same 
consequent. In the proposed neuro-fuzzy network the logic max function is replaced by the 
softmax function. Therefore, the function of each term node j in the output term set i, can be 
written as follows:  
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where p is the number of rules sharing the same consequent (the same output term node), ui is 
the ith input to layer four, and  is an index representing the softness of the softmax function. 
Hence the link weights at layer four are fixed to unity.  
Layer 5: The number of nodes at layer five is 2l, where l is the number of output variables (l=3), 
i.e. two nodes for each output variable. The function of these two nodes is to calculate the 
denominator and the numerator of an approximate form of Mean of Maxima (MOM) 
defuzzification function [Saade, 1996; Runkler, 1997] for each output variable. The functions of 
the two nodes of the ith output variable are described as: 
 

5 54 5*ij ij ni nini
= and = fa m af  (18) 

 

5 554
ij di didi

= and = fa af  (19) 

 

where 5
nif  and 5

dif are respectively the node functions of the numerator and the denominator 

nodes of the ith output variable. mij is the centre (or mean) of the Gaussian function of the jth 
term of the ith output linguistic variable yi. Layer five employs 2l weight vectors, with two weight 
vectors for each output variable. The first link weight vector connects the numerator node of the 

ith output to the term nodes in its term set and its components are denoted by w5
ijn . Each 

component of this weight vector represents the centre (or mean) of the membership function of 
the jth term of the term set of the ith output variable. The second link weight vector connects the 
ith output denominator node to the term nodes in its term set and its components are denoted by 

w5
ijd . Hence the link weights at layer five are fixed to unity.  

Layer 6: The nodes at layer six are defuzzification nodes. The number of nodes in layer six 
equals the number of output linguistic variables (l=3). The function of the ith node corresponding 
to the ith output variable can be written as follows: 
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Where w6
ni  and w6

di  are layer six link weights associated with each output variable node. 

These two link weights represent a scaling factor of the output controller term. 
 

 
4. Neuro-Fuzzy PID Controller Tuning 

Tuning of the PID controller parameters is always not an easy task, especially for 
complex non-linear system such as robotic manipulators (Fahmy et. al., 2011). Fortunately, this 
tuning process can be transformed into a parameter optimization task. In this case of neuro-
fuzzy PID controller, the optimal PID parameters represented in the network weights can be 
found based on certain performance specifications. If the model of the plant is available, the 
neuro-fuzzy can be initially tuned offline in simulation using the Bees Algorithm (BA) to produce 
the best fit for the network parameters before actual physical implementation (Fahmy et. al., 
2011). The flowchart of the bees’s algorithm is given in figure (6). The bees’ algorithm mimics 
the foraging behavior of honey bees. The BA is characterized by a number of parameters that 
are varied to achieve more explorative or exploitative search strategies. These parameters are, 
the number of scout bees (n), the number of high-quality sites that are selected for 
neighborhood search (m), the number of elite (top-rated) sites amongst the best m sites (e), the 
number of bees recruited for neighborhood search around the e elite sites (nep), the number of 
bees recruited for neighborhood search around the remaining m-e sites (nsp), and the initial size 
of each flower patch (ngh) (i.e. the range of the local search around the neighborhood of the best 
m sites). At the start of the procedure, (n) scout bees are randomly distributed with uniform 
probability across the environment (i.e. the solution space). Each bee evaluates the fitness of 
the site (i.e. solution) where it landed. The main bees’ algorithm procedure consists of the 
following sequence of steps. The sites discovered by the scouts are ranked in decreasing order 
of fitness. The fittest (m) locations (best) are selected for the local search phase. In the local 
search phase, the neighborhood of the selected sites is further searched. That is, the scouts 
that found the top (elite) e<m sites recruit each (nep) ‘forager’ bees. The scouts that landed on 
the remaining (m-e) selected locations recruit each (nsp) < (nep) foragers. The recruiting 
procedure simulates the mechanism of the waggle dance in nature. Each forager is placed 
within a square of side (ngh) centered on the selected location. If a forager lands in a position of 
higher fitness than the scout, that forager becomes the new scout and will compete to recruit 
bees for further local exploration in the next iteration. If no forager finds a candidate solution of 
higher fitness than the scout, the size of the neighborhood is shrunk (neighborhood shrinking 
procedure). The purpose of the neighborhood shrinking procedure is to make the search 
increasingly focused around the selected sites. If the local search procedure fails to bring any 
improvement of fitness for a given number of iterations (lim), the search is deemed to have 
found a local peak of performance and the scout is randomly re-initialized (site abandonment 
procedure). If the location being abandoned is the fittest so far, it is stored in memory. If no 
better solution is found during the remainder of the search, the saved best fitness location is 
taken as the final solution. The global search phase follows. In this phase, (n-m) scout bees are 
randomly placed on the solution space. The aim of the global search procedure is to look for 
new areas of high fitness. 
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Figure (6). Structure of the BA search mechanism 
 
 
The stopping criterion depends on the nature of the problem domain, and can be either 

the location of a solution of fitness above a pre-defined threshold, or the completion of a 
predefined number of evolution cycles. In the proposed PID controller, stopping is based on 
meeting certain transient performance specifications within a certain acceptable range (Fahmy 
et. al., 2011). Once, the controller is tuned offline, it has to be also posses the characteristics of 
online adaptation to contentiously improve the performance due to un-modeled disturbances 
(Pham and Fahmy, 2005). For these purposes, following the network construction phase, the 
network enters the parameter learning phase to adjust its free parameters through either offline 
or online adaptation. The network adjustable free parameters were selected to be centres (mij’s) 
of the controller output membership functions of the term nodes in layer four as well as the link 
weights at layers two and six. The supervised learning technique is employed to achieve 
specific controller output system performance in the offline stage using the bee’s algorithm (BA) 
(Fahmy et. al., 2011), while minimizing the un-modeled disturbances error is achieved online 
through BP with momentum algorithm. For each training data set, starting at the input nodes, a 
forward pass is followed to compute the controller output in the network. Then, starting at the 
output nodes, a backward pass is followed to compute the rate of change of the error function 
with respect to the adjustable free parameters for all the hidden nodes. Assuming that (w) is the 
adjustable free parameter in a node, the general adaptation rule when applying the BP with 
momentum algorithm can be written as follows: 
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where  is the learning rate, α is the momentum term, ∆w is the change of weight, E is the error 
vector, then using the chain rule, the partial derivatives can be calculated and  propagated in 
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the network to adapt the weights [Miyamoto et. al., 1988]. Using the learning rule, the 
calculations of the back-propagated errors as well as the updating of the free parameters can be 
done. The adaptive rule to tune the weights of layer six is. 
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where 6 is the learning rate of the link weights at layer six. The error is then 

propagated from layer six to the numerator and the denominator nodes at layer five. At layer 
five, no adjustment is required for the link weights connected to the denominator nodes, while 

an adjustment is required for the link weights 5 'nij sw  which represent the centres mij’s of the 

output membership functions, this adaptation has no link to the original shifting of the MSF 
centre for the integral action element is performed for all controller elements. Consequently, the 
adaptive rule to tune the free parameters in layer five is.  
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where 5 is the learning rate of the adjustable parameters (mij’s) at layer five. The error 

is then propagated from layer five to layer four, and then from layer four to layer three.  No 
adjustment is required for these two layers.  The error is then propagated from layer three to 
layer two, where adaptation for the input membership functions is calculated as follows:  
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 is calculated through error propagation chain rule, 2 is the learning rate of the link 

weights in layer two and in the chain rule, 
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The link weights at layer one are fixed to unity. Now, the feed-back error learning 

scheme (FEL) can be applied online to tune the fuzzy-PID controller parameters online [Kawato 
et. al., 1988], which combines learning and control efficiently. The objective of control is to 
minimize the error between the reference signaland the plant output. If the learning part of the 
architecture is disregarded, then, if the neuro-fuzzy controller is bounded, the system is stable 
[Miyamura and Kimura, 2002; Terashita and Kimura, 2002]. In [Arabshahi et. al., 1992], fuzzy 
control of the learning rate  is suggested. The central idea behind fuzzy control of the BP 
algorithm is the implementation of the heuristics used for faster convergence in terms of fuzzy 
“If-Then” rules. In this study, the fuzzy PID-like feed-back controller along with a fixed learning 
rate provides the general non-linear policy of the controller and learning signal as well. It can be 
seen that the proposed neuro-fuzzy PID controller is designed in a way that makes the 
controller tuning achievable using any algorithm due to the contentious differentiable 
membership functions selected and the differentiable fuzzification and defuzzification methods 
applied in the network. The Bess Algorithm can be applied to tune the controller parameters 
initially offline if the model of the plant is available, to produce a certain set-point transient 
response characteristics before actual physical implementation of the controller (Fahmy et. al., 
2011). The differentiable nature of the controller structure, allow for further online tuning of the 
parameters of the controller for best tracking results [Moudgal et. al., 1995, Ming-Kun et. al., 
2011]. 
 
 
5. Results 

The proposed control system is tested by applying it to control the first two joints of a 
SCARA® type robot manipulator model with a fixed payload [Erbatur et. al., 1995, Er et. al., 
1997, Breedon et. al., 2002]. For comparison purposes, a conventional PID controller, tuned 
using the Ziegler-Nichols tuning rule is used to control the robot. The controller is first tuned 
using the BA to set the initial values of the controller parameters.  The settings for the BA are 
listed in table (5), while the setting for the BP with momentum algorithm is listed in table (6). The 
error signal e (t) is defined as e (t) = r(t) − (t), and r(t) is the desired input signal. In this test, 
the BA was applied for tuning the neuro-fuzzy PID controller as explained in section (4), while 
the BP algorithm is applied for online tuning of the controller. 

 
 

Table (5). Parameters of the BA Algorithm 
Parameter Symbol Value 

No. of scout bees  n 30 

No. of selected bees  m 9 

No. of elite bees  e 3 

Size of neighborhood  ngh 9 

No of sites around selected bees nsp 15 

No of sites around eleite bees nep 15 

Stagnation limit lim 5 

 
 

Table (6). Parameters of the BP Algorithm 
Parameter Symbol Value 

Learning rate η 0.15 

Momentum term α 0.05 

Initial range for neuro-fuzzy network weights - [-1.0, 1.0] 

 
 
The physical parameters of the SCARA type robot arm are given in Table (7). 
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Table (7). Parameters of the SCARA type robot arm 
Parameter Symbol Value Unit 

Link-1 Length L1 0.55  m 

Link-1 CSA A1 0.15 m2 

Link-1 mass M1 1.95 kg 

Link-2 Length L2 0.45 m 

Link-2 CSA A2 0.11 m2 

Link-2 mass M2 1.14 kg 

 
 

The objective function to be minimized for the BA was selected to be [Fahmy et. al., 
2011] : 

 

 

cost 1 d 2 r 3 p 4 5 ssf w w w w wt t t M e      (26) 

 
Where Wi ‘s are weight factors, td is delay time, tr is the rise time, tp is the peak time, M is 
maximum over-shoot, and ess steady state error. The weight factors are given in table (8).  
 
 

Table (8). Objective function weight values 
W1 W2 W3 W4 W5 

1.0 1.0 300.0 300.0 100 

 
 

In the tests, the BA was used to search the initial gains of the NFPID controller to start 
the PID controller gain parameters by values that achieve reasonable transient characteristics 
for set-point control [ Fahmy et. al., 2011]. The objective function used is a multi-variable 
objective function aiming to optimize the overall transient characteristics of the controlled 
system by minimizing the elements that characterize the transient response. The objectives are 
to minimize the delay time, minimize the rise time, minimize the peak time, minimize the 
maximum overshoot value, and finally minimize the steady state error. The weight factors were 
chosen by trial and error, with the aim of minimizing in particular the maximum overshoot, the 
steady-state error, and the steady state error. For this reason, w3 to w5 are much larger w1 to w2. 
In the tests, the bee’s algorithm was used to optimize the gains of the fuzzy PID controller using 
the dynamic model of the robot manipulator [ Fahmy et. al., 2011].  The controller then is tested 
to track link motion over repeated trajectories while the BP algorithm with momentum is applied. 
Figure (8) shows the tracking results for link-1 over four consecutive cycles, while figure (9) 
shows the same result for link-2. The same cycles were also tested using the conventional PID 
controller and displayed on the same figures for comparison purposes. It can be observed from 
the results that the proposed adaptive NFPID controller outperforms the conventional PID 
controller in tracking the desired angle. Also, it can be seen that the effect of the online learning 
techniques reduces the tracking error while cycles progress over time. It worth mentioning that, 
the comparison with the classical PID controller is mainly to highlight the validity of the control 
structure to control with complex systems. The main objectives of the trajectory test is to 
highlight the capabilities of the new controller structure to adapt through online tuning to better 
trajectory tracking result over time. 
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Figure (7). Link-1 Angle in degrees tracking results 
 
 

 
 

Figure (8). Link-2 Angle in degrees tracking results 
 
 
6. Discussion 

The contribution of this work is related to presenting a new definition of the fuzzy 
differentiation, and fuzzy integration used in fuzzy systems and control. The new definition is via 
introducing the idea of performing the differentiation as fuzzy function that is directly related to 
the present fuzzy set membership of the error and the previous membership of the error NOT 
the error value itself, rather depends on the membership function the error is related to. In this 
way, the differentiation function is represented as fuzzy relation, NOT depending on the change 
in error (crisp value) to be scaled in fuzzy system as represented in most previous one, two, or 
three input fuzzy PID work as listed in [Hu et. al., 2001]. Moreover, the re-definition of the fuzzy 
integration in this work, instead of performing the integration as fuzzy scaling to the error and 
change of error with one, two, or three input fuzzy system, it is now performed as a contentious 
summation of the fuzzy sets of the current error and previous sample error with continuous 
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shifting of the centre of the universe of discourse of the fuzzy domain itself to represent the 
memory of the integration. It worth mentioning here that, this method results in re-defining the 
digital differentiation and digital integration in the form of working on the fuzzy membership 
functions directly. So, the control system suggested in the work is not presented as a 
competitive control algorithm that outperform controller for unknown systems such as adaptive 
control, robust control, predictive control etc.  Rather, it is presented as a new (TRUE FUZZY) 
definition for the differentiation and integration processes used in the fuzzy system with an 
example of performing PID control action. For robotic tracking control where the reference and 
dynamics is always changing, the inverse dynamic control is the best to be utilized, despite very 
difficult to be implemented mathematically. Consequently, researcher tends to use neural 
network and neuro-fuzzy systems to avoid complex mathematical formulation. In (Pham and 
Anh, 2010) a gain-scheduling neural PID controller is utilized with 2-axis robotic structure for 
varying the parameters of the neural PID controller to include information from the robot 
dynamics. Hence, the core contribution of the paper is to introduce the new definition of the 
fuzzy-PID controller as a new three fuzzy functions (fuzzy proportional, fuzzy integral and fuzzy 
differential) that work directly on the membership functions that the current and previous sample 
error is related to. The use of the NN structure is to implement the Fuzzy-PID controller in an 
adaptive format suitable for online tuning and is not a stand alone or added item to the system, 
which makes any adaptation algorithm, can be applied to tune the proposed controller either 
online or off-line. The introduction of the Bees Colony is to show an example of adaptation 
technique that is used previously, while the user can select the suitable algorithm to tune the 
controller, even classical BP algorithm can be applied. The processing time used is dependent 
on the algorithm applied for adaptation, while the non-avoidable processing time is mainly the 
time used to calculate the proposed fuzzy control reactions to the error input in the form of 
algebraic calculation function. The fuzzy PID controller suggested is considered as a nonlinear 
model free control that possesses fixed structure that can be initially designed and then tuned to 
best fit the target system while it is in operation. This characteristic and its non-linearity emulate 
the classical gain scheduling and variable-structure control in their effect on the complex system 
control.  The effect of varying the fuzzy membership size on each P, I, or D term of the controller 
is similar to varying each controller term value in classical linear PID controller, while changing 
the number of controller rules is controlled by the number of membership functions in the 
universe of discourse of the error domain. This directly affects the controller non-linearity and 
response time, for example less number of membership functions and rules results in quicker 
controller response and closer to classical linear PID controller. The optimal fuzzy model size is 
normally subjected to the designer selection of the structure of the controller and its tuning 
method. The frequency response of the torque result is much faster than the frequency 
response of the robot mechanical time constant due to high speed computation in the virtual 
domain. NI the proposed work, the main target is to demonstrate the tracking convergence to 
the desired trajectory, while the learning process of the controller proceeds. The detailed initial 
tuning process and variations of the PID controller gains is described in the author previous 
work [Fahmy et. al., 2011], while the scope of the work is to highlight the new controller design 
structure, online learning, and tracking capabilities.  
 
 
7. Conclusion 

This paper proposed a new adaptive functional based adaptive neuro-fuzzy-PID 
(NFPID) controller that can be tuned offline to set the initial parameters using the BA to achieve 
certain transient performance specifications based on the system model. The proposed 
controller differential structure permits also for online adaptation of the controller that can used 
to obtain another set of parameters that achieve better tracking and eliminate un-modelled 
disturbances effect on the system performance for the problem of trajectory control of robotic 
manipulators. The scope contribution of the paper is not to introduce an outperforming controller 
for the MIMO robotic structure presented in the paper, rather it is to introduce a new definition 
for fuzzy PID controller and a new representation that is simple and effective to do the control 
job with the capability for further tuning online while the system is operation. So, the choice of 
the robotic structure as a test bed for the controller is for demonstration purposes of the 
controller capabilities not to claim its outperformance over the classical PID control or other 
controller structure used for robotic manipulation control. The use of a fixed payload on the 
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robotic structure is to highlight the idea that the controller, despite the main contribution is its 
new definition for the fuzzy integral and fuzzy differential, it is still can be adapted to cope with 
variation in a nonlinear system results from changing structure, while a fixed gain controller, 
despite could achieve good control performance in the fixed robot structure, it could easily 
deviate the trajectory considerably when the structure is changed by attached load. This new 
adaptive neuro-fuzzy-PID (NFPID) controller was applied to control the first two links of a 
SCARA® type robot manipulator model over pre-planned joint-trajectories while carrying a fixed 
payload. The results showed that the method was successful and applicable for robotic 
manipulators control. 
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Appendix (A): SCARA Robot Dynamics 
The equations of motion can be described by a set of differential or difference equations. The 
equation set consists of two parts, the kinematics equations and the dynamic equation. Robot 
arm kinematics deals with the geometry of robot arm motion as a function of time (position, 
velocity, and acceleration) without reference to the forces and moments that cause this motion, 
while the dynamics of robot is the study of motion with regard to forces and torques.   
In robotics manipulators, there are two methodologies used for dynamic modeling.  
a) Newton-Euler formulation.  
b) Lagrangian formulation.  
An analytical approach based on the Lagrange's energy function, known as Lagrange- Euler 
method, results in a dynamic solution that is simple and systematic. In this method, the kinetic 
energy (K) and the potential energy (P) are expressed in terms of joint motion trajectories. The 
resulting differential equations then provide the forces (torques) which drive the robot. Closed 
form equations result in a structure that is very useful for robot control design and also 
guarantee a solution. The dynamics of n-link manipulators are conveniently described by 
Lagrangian dynamics. In the Lagrangian approach, the joint variables, q = (q

1
; . ... .; q

n
)T , serve 
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as a suitable set of generalized coordinates. The kinetic energy is a quadratic function of the 

vector 
.
q of the form:  

 

K 
.

)(
.

2
1..

)(
2
1

1,
qqDTqjqiqqijd

n

ji



 (A.1) 

 
Where the nxn "inertia matrix" D(q) is symmetric and positive definite for each q. The 

gravitational potential energy P=P(q) is independent of 
.
q . The Euler-Lagrange equations for 

such a system can be derived as follows. Since 
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where L is the Lagrangian then the dynamic equations of an n-joint robotic manipulator 
described by Lagrange's equations can be expressed as: 
 

D
..
q)q( +C(q,

.
q )

.
q +G(q)+B(

.
q ) = (A.3) 

 

where q is the generalized coordinates of the robot arm, 
.

iq  is the first derivative of q
i
; D(q) is 

the symmetric, bounded, positive-definite inertia matrix; vector C(q, 
.
q ) 

.
q  presents the 

centrifugal and Coriolis torque; G(q) , B(
.
q ) and  represent the gravitational torque, friction, and 

applied joint torque, respectively.      
D(q) (nxn matrix) expressed as: 
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Where Ak and Bk represent 3xn Jacobian submatrices, mk is the mass of link k and Dk is the nxn 

link inertia tensor which depends on q. The equation of velocity coupling vector C(q,
.
q ,) is: 
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The equation of gravity loading vector (nx1) is: 
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and the frictional force model for joint k is expressed as: 
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where: f = 
ε

.
q

k


, b
v
k  represent the coefficient of viscous friction, b

d
k  is the coefficient of 

dynamic friction, and b
s
k  is the coefficient of static friction for joint k and   is a small positive 

parameter. The dynamic equation derived by using the Euler- Lagrangian method  for the  first 
two  arms of  the SCARA configuration will be as follows [6]: 
1st joint:  
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2nd joint: 
 

2=[
2

m2 a1a2C2+
3

m2 2
2a ]

..

1
q +

3

m2 2
2a

..

2
q +

2

m2 a1a2S2

2

1

.
q +b2( 2

.
q ) (A.9) 

 
Where mi is the mass and ai is the length of link i, C and S represent the cos(q) and sin(q), 

respectively. Let the state defines as xT=[qT, vT], where v=q
.

. Since n=2, the manipulator inertia 
tensor is a symmetric 2x2 matrix. From the coefficients of the joint accelerations, the distinct 
components of D(q) are: 
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Because D(q) is symmetric then 
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